GOVERNMENT COLLEGE FOR WOMEN (AUTONOMOUS)

KUMBAKONAM - 612001

Affiliated to Bharathidasan University
DST - CURIE Sponsored Institution IV Cycle of Accreditation

DEPARTMENT OF MATHEMATICS
EMPLOYABILITY
ENTERPRENEURSHIP
SKILL
DEVELOPMENT

CC- II PROGRAMMING IN C

Theory Hours : 3 Course Code : U21MC102
Practical Hours :-Credits: 2
Exam Hours: 3 Internal : 25
External : 75

UNIT - I

Introduction to C - History - Identifiers - Keywords - Variables - Data types - Operators and Expressions - Input and Output statements.

UNIT - II

Conditional statements: simple if, if-else, nested if else, else if ladder, switch and go to statement - Looping statements: while, do-while and for statements - Nesting of loops.

UNIT - III
Introduction to Arrays - One dimensional - Two dimensional.

UNIT - IV

Introduction to Modular Programming: Functions - Call by Value - Call by reference Category of functions - Nesting of functions.

UNIT - V

Introduction to structures and unions - Array of structures - Array within structures, Structures within Structures.

TEXT BOOK :

[1] Balagurusamy. E, Programming in ANSI C, Tata McGraw - Hill, Third Edition, 2013.
UNIT I : Sections 1.1-1.10, $2.2-2.14,3.2,3.16,4.1-4.5$.
UNIT II : Sections 5.1-5.9, 6.1-6.5.
UNIT III : Sections 7.1-7.4.
UNIT IV : Sections 9.1-9.12.

Government College for Women(Autonomous)
KUMBAKONAM.

GOVERNMENT COLLEGE FOR WOMEN (AUTONOMOUS)

KUMBAKONAM - 612001

Affiliated to Bharathidasan University
DST - CURIE Sponsored Institution IV Cycle of Accreditation

UNIT V : Sections 10.1-10.8.
REFERENCE (S):
[1]D.M. Ritchie, The C Programming Language, Prentice Hall of India, 1977. [2] Y.
Kanetkar, Understanding Pointers in C, $4^{\text {th }}$ Edition, BPB publications, New Delhi. [3]C.
Gottfried, Programming in C, Schaum outline series, 1996.
[4]P. Pandiyaraja, Programming in C, Vijay Nicole Imprint Private Limited, 2005.

Question Paper Pattern

SECTION A : $20 \times 1=20$ (Each Unit Carries Four Multiple Choice Questions)
SECTION B : $5 \times 5=25$ (Each Unit Carries Two Questions (Either or Type))
SECTION C : $3 \times 5=30$ (Each Unit Carries One Questions)

Total $=75$

NMEC - I MATHEMATICS FOR COMPETITIVE EXAMINATIONS - I

Theory Hours : 2 Course Code :U21M3NME1:2
Practical Hours : - Credits : 2
Exam Hours: 3 Internal : 25
External : 75

UNIT - I

Numbers - HCF and LCM - Decimal Fractions.

UNIT - II

Square Roots and Cube Roots - Percentage - Average - Ratio and Proportion Partnership - Profit and Loss.

GOVERNMENT COLLEGE FOR WOMEN (AUTONOMOUS)

KUMBAKONAM - 612001

Affiliated to Bharathidasan University
DST - CURIE Sponsored Institution IV Cycle of Accreditation

Time and Work - Time and Distance.

UNIT - IV

Problems on Trains - Problems on Numbers - Problems on Ages.

UNIT - V

Area - Volume and Surface Areas.
TEXT BOOK:
[1]. R.S Aggarwal, Quantitative Aptitude, S.Chand and company Ltd., New Delhi,2008.

REFERENCE(S) :

[1]. B.S.Sijwali, quantitative aptitude Arihant Publications(india) Pvt Ltd 2007. [2].
Abhijit Guha, Quantitative Aptitude for Competitive Examinations, Mc Graw Hill Companies, 2006.
[3]. Arora .P.N. and Arora.s. 2009, Quantitative Aptitude Mathematics: Volume
1,S.Chand and company Ltd.
[4]. Kothari. C.R.1989, Quantitative techniques,Vikas Publishing House Pvt Ltd. [5].
Srinivasan.T.M., Perumalswami.S. and gopala Krishnan.M.D., 1985 , Elements of
Quantitative Techniques, Emerald Publishers.

Question Paper Pattern

Each units fifteen multiple choice questions for all topics: $75 \times 1=75$

> SEC - I Introduction to Latex
> (for Scientific Documentation)

Theory Hours : 2 Course Code : P21M1SE1P
Exam Hours : 2 Credits : 2 Internal : 40 External : 60

GOVERNMENT COLLEGE FOR WOMEN (AUTONOMOUS)

KUMBAKONAM - 612001

Affiliated to Bharathidasan University
DST - CURIE Sponsored Institution IV Cycle of Accreditation

UNIT I :

Basic Structure of Latax 2 e - Input file structure - Layout - Editors - Forward search Inverse Search - Compling - Conversion to various formats.

UNIT II :
Typesetting simple documents - sectioning - Titles - page layout - listing - enumerating -quote letter formats.
UNIT III :
Using package amsmath typing equations labeling and refreing.

UNIT IV:

Figure inclusion - Table inclusion.

UNIT V:

Bibliography - Intex typing - Beamer presentation Styles.

TEXT BOOK:

[1] Leslie Lamport, LATEX: A Document preparation System, Addison - Wesley, Reading,Massachusetts, second edition, 1994.

REFERENCES:

[1] Tobias Oetiker, Hubert Partl, Irence hyna and Elisabeth Schlegl., The (Not So) Short Introduction to LATEX2e, Samurai Media Limited (or available online at http:// mirrors,ctan.org/info/lshort/English/lshort.pdf)
[2] LATEX Tutorials - A Primer, Indian Tex Users Group, available online at https://www.tug.org/twg/mactex/tutorials/ltxprimer-1.0.pdf)
[3]H.J.Greenberg. A Simplified introduction to LATEX, available online at http://www.ctan.org/tex-archive/info/simplified-latex/
[4]Using Kile - KDE Documentation, https://docs.kde.org/trunk4/en/extragear office/klie/quick_using.html

Question Paper Pattern

GOVERNMENT COLLEGE FOR WOMEN (AUTONOMOUS)

KUMBAKONAM - 612001 Affiliated to Bharathidasan University

DST - CURIE Sponsored Institution IV Cycle of Accreditation

Estd. 1963

ANSWER ALL THE QUESTIONS:

$1 \times 15=15$ Marks
$2 \times 20=40$ Marks
Record $=5$ Marks

Total $=60$ Marks

CC - V THEORY OF EQUATIONS AND VECTOR CALCULUS
Theory Hours : 6 Course Code : U21MC305
Credits : 5 Exam Hours: 3 Internal : 25 External : 75

UNIT - I

Relation between the roots and coefficients of polynomial Equations - Symmetric functions - Sum of the $\mathrm{r}^{\text {th }}$ powers of the roots - Newton's Theorem on the sum of the powers of the roots.

UNIT - II

Transformations of Equations - (Roots with sign changed - Roots multiplied by a given numberReciprocal roots) - Reciprocal equations - To increase or decrease the roots of given equation by a given quantity Form the quotient and Remainder when a polynomial is divided by a binomial - Removal of terms - To form an equation whose roots are any power of the roots of a given equation.

UNIT - III

Vector differentiation - Velocity and acceleration vectors - Vector and scalar fields - Gradient of a vector

- Unit normal - Directional derivative - Divergence and curl of a vector - Solenoidal and Irrotational vectors Laplacian double operators - Simple problems.

UNIT - IV
Vector Integration - Tangential line integral - Conservative force field - Scalar potential - Normal surface integral - Volume integral - Simple problems.

UNIT - V

Gauss Divergence theorem - Stoke's theorem - Green's theorem - Simple problems and verification of

the theorems for simple problems (statement only).

TEXT BOOK(S):

[1] T.K. Manickavasagam Pillai and others, Algebra volume I, S.V. Publications Reprint - 2013.
[2] K.Viswanathan and S.Selvaraj, Vector Analysis, Emerald Publishers Reprint 1999.

UNIT I : Chapter 6 (sections 11 to 14) of [1].
UNIT II : Chapter 6 (sections 15, 16, 17, 18, 19, 20) of [1].
UNIT III : Chapterl of [2].
UNIT IV : Chapter 3 of [2].
UNIT V : Chapter 4 of [2].
REFERENCE(S):
[1] H.S Hall and S.R Knight ,Higher Algebra, prentice Hall of India, New Delhi.
[2] J.N. Sharma, A.R. Vasistha, Vector calculus, Krishna Prakashan Media (P) Ltd., 2004. [3]
Duraipandian, Laxmi Duraipandian, Vector Analysis, Emerald Publishers,Chennai-2 1986. [4]
Advanced Calculus, Robert C. Wrede Murray Spiegel, Tata Mc. Grew Hill, 2002.
SECTION A : $20 \times 1=20$ (Each Unit Carries Four Multiple Choice Questions)
SECTION B : $5 \times 5=25$ (Each Unit Carries Two Questions (Either or Type))
SECTION C : $3 \times 5=30$ (Each Unit Carries One Questions)
Total $=75$

CC - VII SEQUENCES AND SERIES

Theory Hours : 5 Course Code : U21MC407 Credits : 5 Exam Hours : 3 Internal : 25 External : 75

UNIT - I

Sequence, limit, convergence of a sequence - Cauchy's general principle of convergence - Cauchy's first theorem on Limits - Bounded sequence - Monotonic sequence always tends to a limit, finite or infinite.

UNIT - II

Infinite series Definitions of Convergence, Divergence and Oscillation- Necessary condition for Convergence - Convergence of $\sum^{1} ?$ and Geometric series.

GOVERNMENT COLLEGE FOR WOMEN (AUTONOMOUS)

KUMBAKONAM - 612001

UNIT - III

Comparison test - D' Alembert's Ratio test and Raabe's test, Simple problems based on above tests.

UNIT- IV

Cauchy's condensation test - Cauchy's Root test and their simple problems

- Alternative series with simple problems.

UNIT - V

Binomial theorem for rational index - Exponential and Logarithmic series.Summation of series and approximations using these theorems.

TEXT BOOK :

[1] T.K. Manicavachagampillai, T. Natarajan, K.S. Ganapathy, Algebra, Volume - I, S.Viswanathan Pvt Limited, Chennai,2013.

UNIT -I : Chapter 2 (sections 1 to 7)
UNIT -II : Chapter 2 (sections $8,9,10,11,12$ and14)
UNIT -III : Chapter 2 (Sections13, 16, 18 and19)
UNIT -IV : Chapter 2 (sections 15, 17, 21 to24)
UNIT -V : Chapter 3 (sections 5 to 11, 14) and Chapter 4 (Sections 2, 3, 5 to9).

REFERENCE (S) :

[1] M.K Singal and Asha Rani Singal, A first course in RealAnalysis, R. Chand and Co., 1999.
[2] Dr. S.Arumugam, Sequences and Series, New Gamma Publishers, 1999.
[3] Richard, R. Goldberg, Methods of RealAnalysis [Oxford and IBH Publishing Co.PvtLTD].

Question Paper Pattern

SECTION A : $20 \times 1=20$ (Each Unit Carries Four Multiple Choice Questions)
SECTION B : $5 \times 5=25$ (Each Unit Carries Two Questions (Either or Type))
SECTION C : $3 \times 5=30$ (Each Unit Carries One Questions)

```
-----
```

Total $=75$
\qquad

GOVERNMENT COLLEGE FOR WOMEN (AUTONOMOUS)

KUMBAKONAM - 612001

CC- IX ABSTRACT ALGEBRA

Theory Hours : 6 Course Code : U21MC509-Credits : 5 Exam Hours : 3 Internal : 25 External : 75

UNIT - I Groups

Groups - Introduction - Definition and Examples - Elementary Properties of a Group - Equivalent Definitions of group - Permutation Group -Subgroups - Cyclic groups - Order of an element.

UNIT - II

Cosets and Lagrange's theorem - Normal subgroups and Quotient groups - Isomorphisms
Homomorphisms .

UNIT - III Rings

Definition and Examples - Elementary Properties of rings - Isomorphism - Types of rings -Characteristic of a ring - Subrings.

UNIT - IV

Ideals - Quotient rings - Maximal and prime ideals - Homomorphism of rings - Field of quotients of an integral domain - Ordered integral domain.

UNIT - V

Unique factorization domain(U.F.D) - Euclidean domain - Every P.I.D. is a U.F.D. - Polynomial Rings Polynomial Rings over U.F.D. - Polynomials over Q.

TEXT BOOK :

[1] S. Arumugam and A. Thangapandi Isaac, Modern Algebra, Scitech publications (India) PVT, Ltd - $20041^{\text {st }}$ print .

UNIT I : Chapter 3 (sections 3.0 to 3.7)
UNIT II : Chapter 3 (sections 3.8 to 3.11)
UNIT III : Chapter 4 (sections 4.1 to 4.6)
UNIT IV : Chapter 4 (sections 4.7 to 4.12)
UNIT V : Chapter 4 (sections 4.13 to 4.18)
REFERENCE (S):
[1] M.L.SANTIAGO, Modern Algebra, Tata,MCGraw-Hill publishing Company
Limited, New Delhi.

GOVERNMENT COLLEGE FOR WOMEN (AUTONOMOUS)

KUMBAKONAM - 612001

S.G. Venkatachalapathy, Modern Algebra, Margham Publications, 2008.
[4] I.N. Herstein, Topics in Algebra, John wiley and sons, New York, 2003.

Question Paper Pattern

SECTION A : $20 \times 1=20$ (Each Unit Carries Four Multiple Choice Questions)
SECTION B : $5 \times 5=25$ (Each Unit Carries Two Questions (Either or Type))
SECTION C : $3 \times 5=30$ (Each Unit Carries One Questions)

Total $=75$

CC - X REAL ANALYSIS

Theory Hours : 5 Course Code : U21MC510 - Credits : 5 Exam Hours : 3 Internal : 25 External : 75

UNIT - I

Sets and functions : sets and elements - Operations on sets - Functions - Real valued functions Equivalence, countability - Real numbers - Least upper bounds.

UNIT - II

Limits and metric spaces : Limit of a function on the real line - Metric spaces - Limits in metric spaces.

UNIT - III

Continuous functions on metric spaces : Functions continuous at a point on the real line
Reformulation - Functions continuous on metric space - Open sets - Closed sets.
UNIT - IV
Calculus: sets of measure zero - Definition of the Riemann integral - Existence of the Riemann integral - Properties of the Riemann integral - Derivatives - Rolle's theorem - The law of the mean Fundamental theorem of calculus.

UNIT - V

Taylor series : Taylor's theorem - The binomial theorem - L'Hospital's rule

GOVERNMENT COLLEGE FOR WOMEN (AUTONOMOUS)

KUMBAKONAM - 612001

Affiliated to Bharathidasan University
DST - CURIE Sponsored Institution IV Cycle of Accreditation
[1] RICHARD R.GOLDBERG, Methods of Real Analysis, Oxford and IBHP Publishing co, Pvt., Ltd.,New Delhi,1970.

UNIT - I : Chapter 1 (sections 1.1 to 1.7)
UNIT - II : Chapter 4 (sections 4.1 to 4.3)
UNIT - III : Chapter 5 (sections 5.1 to 5.5)
UNIT - IV : Chapter 7 (sections 7.1 to 7.8)
UNIT - V : Chapter 8 (sections 8.5 to8.7)

REFERENCE(S) :

[1] M.K. Singal and Asha Rani Singal , A First course in RealAnalysis, R. Chand and Co, publishers, New Delhi,2003.
[2] Shanthi Narayananan, A Couse of Mathematical Analysis, S.Chand and Co,1995.

Question Paper Pattern

SECTION A : $20 \times 1=20$ (Each Unit Carries Four Multiple Choice Questions)
SECTION B : $5 \times 5=25$ (Each Unit Carries Two Questions (Either or Type))
SECTION C : $3 \times 5=30$ (Each Unit Carries One Questions)

```
Total=75
```

CC-XII DIFFERENTIAL EQUATIONS
Theory Hours : 5 Course Code : U21MC512 Practical Hours : - Credits : 4 Exam Hours : 3 Internal : 25 External : 75

UNIT - I

Differential Equations of the first order: Definitions - Solutions of Differential Equations - Equations of the first order and the first degree - Variables Separable - Homogeneous Equations - Non-Homogeneous Equations
of the first degree in X and Y - Linear Equations - Bernoulli's Equations - Exact Differential Equations - Sufficient
Conditions - Rule for Solving an Exact Differential Equations - Rules for Integrating Factors - Equations Solvable
of p-Equations Solvable for y - Equations solvable for x - Clairaut's Form.

UNIT - II

Linear Differential equations with constant coefficients: The operators D and D^{-1} - Particular integral Special methods of finding particular integral - Linear equations with variable coefficients - Find the particular integral - Equations reducible to the linear homogeneous equation.

UNIT - III

Simultaneous Differential equations: Simultaneous of the first order and first degree - Solution of $\mathrm{dx} / \mathrm{P}=$ $d y / Q=d z / R-$ Methods for solving $d x / P=d y / Q=d z / R-G e o m e t r i c a l ~ i n t e r p r e t a t i o n ~ o f ~ d x / P ~=~ d y / Q=d z / R-T o t a l ~$ Differential equations rules for Integrating $\mathrm{Pdx}+\mathrm{Qdy}+\mathrm{Rdz}=0$.

UNIT - IV

Partial Differential Equations: Derivation of Partial Differential Equations - Elimination of arbitrary Constants - Elimination of arbitrary Functions - Different integrals of partial differential Equations - Solutions of PDE in some simple cases.

UNIT - V

Standard types of first order Equations - Types I, II, III, IV - Lagrange's Equation - Charpit's Method Standard I, II, III, IV.

TEXT BOOKS:

[1] S. Narayanan and T.K. Manickavasagam Pillai, Calculus volume- III
S.Viswanathan (Printers and Publishers), Pvt. Ltd. 2011.

UNIT I : Chapter 1 (sections 1.1, 1.2, 1.2.0-1.2.5,1.3.1-1.3.3,1.4,1.5.1-1.5.5,
1.6.1)

UNIT II : Chapter 2 (sections 2.1, 2.1.2, 2.2-2.4, 2.8, 2.8.1-2.8.3, 2.9)
UNIT III : Chapter 3 (sections 3.1-3.5, 3.7, 3.7.2-3.7.4)
UNIT IV : Chapter 4 (sections 4.1, 4.2, 4.2.1-4.2.3, 4.4)
UNIT V : Chapter 4 (sections 4.5, 4.5.1-4.5.5, 4.6, 4.6.1, 4.7, 4.7.1)
REFERENCE(S):
[1] P.R. Vittal, V. Malini, Calculus, Margham, Publications, 2004.
[2] Dr. M.K. Venkataraman, Mrs. Manorama Sridhar, Differential equations and Laplace
Transforms, National publishing company, 2004.
[3] S. Narayanan, T.K. Manikavachagom pillai, Differential Equations and its Applications viswanathan printers, 2007.
[4] Arumugam Issac, Allied Mathematics, New Gamma Publishing house, 2007.

Question Paper Pattern

GOVERNMENT COLLEGE FOR WOMEN (AUTONOMOUS)

KUMBAKONAM - 612001

```
SECTION A : \(20 \times 1=20\) (Each Unit Carries Four Multiple Choice Questions )
SECTION B : \(5 \times 5=25\) (Each Unit Carries Two Questions (Either or Type ))
SECTION C : \(3 \times 5=30\) (Each Unit Carries One Questions )
```

```
Total=75
```

```
Total=75
```


CC - XIII COMPLEX ANALYSIS

Theory Hours : 6 Course Code : U21MC613 Practical Hours :- Credits : 5 Exam Hours : 3 Internal : 25 External : 75

UNIT - I
Functions of a complex variable - Limits - Theorems on Limits - Continuous functions - Differentiability - Cauchy - Riemann equations - Analytic functions - Harmonic functions.

UNIT - II

Elementary transformations - Bilinear transformations - Cross radio - Fixed points of Bilinear transformations - Some special bilinear transformations.

UNIT - III

Complex Integration: Definite integral - Cauchy's theorem - Cauchy's integral formula - Higher
derivatives.

UNIT - IV
Series Expansions: Taylor's series - Laurent's series - Zeros of analytical functions - Singularities.

UNIT - V

Residues - Cauchy's Residue theorem - Evaluation of definite integrals.

TEXT BOOK:

[1] S.Arumugam, A.Thangapandi Isaac and A.Somasundaram, Complex Analysis, New Scitech publications (India) Pvt.Ltd. November 2003.

UNIT I : Chapter 2 (sections 2.1 to 2.8)
UNIT II : Chapter 3 (sections 3.1 to 3.5)
UNIT III : Chapter 6 (sections 6.1 to 6.4)
UNIT IV : Chapter 7 (sections 7.1 to 7.4)
UNIT V : Chapter 8 (sections 8.1 to 8.3)

GOVERNMENT COLLEGE FOR WOMEN (AUTONOMOUS)

KUMBAKONAM - 612001

REFERENCE(S)

[1] P.P.Gupta - Kedarnath and Ramnath, Complex Variables, Meerut-
Delhi.
[2] J.N.Sharma, Functions of a Complex Variable, Krishna
Prakasan Media(p) Ltd. $13^{\text {th }}$ Edition, 1996-97.
[3] T.k. Manickavachagam Pillai, Complex Analysis, S.Viswanathan Publishers pvt.
Ltd. 1994.
COURSE OUT COMES:
The students will be able to
Question Paper Pattern
SECTION A : $20 \times 1=20$ (Each Unit Carries Four Multiple Choice Questions)
SECTION B : $5 \times 5=25$ (Each Unit Carries Two Questions (Either or Type))
SECTION C : $3 \times 5=30$ (Each Unit Carries One Questions)
Total $=75$

MBEC - II NUMERICAL ANALYSIS

Theory Hours : 6 Course Code : U21M6MBE2:1 Practical Hours : - Credits : 5 Exam Hours : 3 Internal
: $\mathbf{2 5}$ External: 75

UNIT - I
Algebraic and Transcendental equations - Finding the solution of the given equation using bisection method, Method of false position, Newton-Raphson method, Iteration method.

UNIT - II

Finite differences - Forward, Backward and central differences - Newton's Forward and backward difference interpolation formulae - Interpolation with unevenly spaced points - Lagrange's interpolation formula.

UNIT - III

Numerical Integration - Using Trapezoidal rule and simpson's1/3 and 3/8-rules.
UNIT - IV

GOVERNMENT COLLEGE FOR WOMEN (AUTONOMOUS)

KUMBAKONAM - 612001

 Affiliated to Bharathidasan UniversityDST - CURIE Sponsored Institution IV Cycle of Accreditation

Solution to Linear systems - Gauss Elimination method - Jacobi and Gauss Siedal iterative methods.

UNIT - V

Numerical solution of ODE - Solution by Taylor's series method, Picard's method, Euler's method, Runge kutta second and fourth order methods.

TEXTBOOK:

[1] S.S Sastry, Introductory methods of Numerical Analysis, Prentices Hall of India Pvt.Limited,2001,Third Edition.
UNIT I : Chapter 2 (sections 2.2, 2.3, 2.4, 2.5)
UNIT II : Chapter 3 (sections 3.3.1, 3.3.2, 3.3.3, 3.6, 3.9, 3.9.1)
UNIT III : Chapter 5 (sections 5.4, 5.4.1, 5.4.2, 5.4.3)
UNIT IV : Chapter 6 (sections 6.3, 6.3.2) and Chapter 8 (sections 8.3.1, 8.3.2)
UNIT V : Chapter 7 (sections 7.1, 7.2, 7.3, 7.4,7.5).

REFERENCE(S):

[1] S.Narayanan and others, Numerical Analysis, S.Viswanathan Publishers, 1994,
[2] A.Singaravelu, Numerical methods, Meenachi Agency, June 2000.
[3] E. Kendall, Atkinson, An Introduction to Numerical Analysis, II Edition, John wiley\& Sons, 1989.

Question Paper Pattern

SECTION A : $20 \times 1=20$ (Each Unit Carries Four Multiple Choice Questions)
SECTION B : $5 \times 5=25$ (Each Unit Carries Two Questions (Either or Type))
SECTION C : $3 \times 5=30$ (Each Unit Carries One Questions)

Total $=75$

CC - I LINEAR ALGEBRA

Theory Hours : 6 Course Code : P21MC101 Exam Hours : 3 Credits : 5 Internal : 25

 External : 75
UNIT I :

Systems of linear Equtions - Matrices and Elementary Row operations - Row -Reduced Echelon matrices - Matrix

GOVERNMENT COLLEGE FOR WOMEN (AUTONOMOUS)
KUMBAKONAM - 612001 Affiliated to Bharathidasan University

DST - CURIE Sponsored Institution IV Cycle of Accreditation
0435-2401391
principal@gcwk.ac.in

multiplication - Invertible matrices - Vector spaces - Subspaces - Bases and Dimension - Co ordinates.

UNIT II :

The algebra of linear transformations - Isomorphism of vector spaces - Representations of Linear
Transformations by Matrices - Linear functional - The Double Dual - The Transpose of Linear
Transformation.UNIT III :
The algebra of polynomials - Lagrange Interpolation - Polynomial Ideals - The prime factorization of a polynomial, Commutative rings - Determinant functions - permutations and the uniqueness of determinants Additional properties of Determinants.

UNIT IV :

Characteristic values - Annihilating polynomials, Invariant subspaces -simultaneous triangulation and
simultaneous Diagonalization - Direct- sum - Decompositions.
UNIT V :
Invariant Direct sums - The primary Decomposition Theorem - Cyclic subspaces - Cyclic Decompositions and the Rational Form.

TEXT BOOK :

[1] Kenneth Hoffman and Ray kunze, Linear Algebra second Edition, prentice -Hall of India private limited, New Delhi, 2005.

UNIT I : Chapter 1 and chapter 2 (sections 2.1 to 2.4)
UNIT II : Chapter 3
UNIT III : Chapter 4 and Chapter 5 (sections 5.1 to 5.4)
UNIT IV : Chapter 6 (sections 6.1 to 6.6)
UNIT V : Chapter 6 (sections 6.7, 6.8) and chapter 7 (sections 7.1, 7.2)

REFERNCES:

[1] I.N. Herstein, Topics in Algebra, Wiley Eastern Limited, New Delhi, 1975.
[2] I.S. Luther and I.B.S. Passi, Algebra, volume II - Rings, Narosa publishing
House, 1999.
[3] N. Jacobson. Basic Algebra, vols. I and II Freeman, 1980 (also published by
Hindustan Publishing Company).

Question Paper Pattern

SECTION A $10 \times 2=20$ (Each Unit Carries Two Questions)
SECTION B $5 \times 5=25$ (Each Unit Carries Two Questions (Either or Type))
SECTION C $3 \times 5=30$ (Each Unit Carries One Questions)

```
Total = 75
```

CC - V ALGEBRA

GOVERNMENT COLLEGE FOR WOMEN (AUTONOMOUS)

KUMBAKONAM - 612001

Theory Hours : 6 Course Code : P21MC205 Exam Hours : 3 Credits : 5 Internal : 25 External: 75

UNIT I:

Another counting principle - Sylow's theorem - Direct Products - Finite Abelian Groups.

UNIT II:

More Ideals and Quotient rings - Polynomial rings - Polynomial over the rational field - Polynomial rings over Commutative rings.

UNIT III :

Dual spaces - Inner Product spaces - Modules - Orthogonal Complement - Orthogonal Basis - left module over a Ring - Submodule - Quotient module - Cyclic module - Structure Theorem for Finitely Generated Modules over Euclidean Rings.

UNIT IV :
Fields : Extension Fields - Roots of Polynomials - More about roots.
UNIT V:
The Elements of Galois Theory - Solvability by Radicals - Finite Fields.

TEXT BOOK :

[1] I.N Herstein, Topics in Algebra, Second Edition John Wiley and Sons, 1975.
UNIT I : Chapter 2 (sections 2.11, 2.12, 2.13 and 2.14)
UNIT II : Chapter 3 (sections 3.5, 3.9, 3.10 and 3.11)
UNIT III : Chapter 4 (sections 4.3, 4.4 and 4.5)
UNIT IV : Chapter 5 (sections 5.1, 5.3 and 5.5)
UNIT V : Chapter 5 (sections 5.6, 5.7) and Chapter 7 (Section 7.1)

REFERENCES :

[1] Surjeet Singh, Qazi Zammeruddin, Modern Algebra, Vikas Publishing House private Limited, 1972. [2] John B.Fraleigh, A first course in Abstract Algebra, Pearson Education privat Limited, 2003. [3] Vijay K.Khanna and S.K Bhambri, A course in Abstract Algebra, Vikas Publishing House private limited, 1993.
[4] John B. Fraleigh, A First Course in Abstract Algebra, Seventh Edition, Instructor's Solution Manual, University of Rhode Island, July 2002.

Question Paper Pattern

GOVERNMENT COLLEGE FOR WOMEN (AUTONOMOUS)

KUMBAKONAM - 612001

SECTION A $10 \times 2=20$ (Each Unit Carries Two Questions)
SECTION B $5 \times 5=25$ (Each Unit Carries Two Questions (Either or Type))
SECTION C $3 \times 5=30$ (Each Unit Carries One Questions)

Total $=75$

CC - VII COMPLE X ANALYSIS

Theory Hours : 5 Course Code : P21MC207 Exam Hours : 3 Credits : 5 Internal : 25 External: 75

Objectives:

1. The concepts of derivation of analytic functions.
2. Express the Cauchy's derivative formulas.

UNIT I :

Conformality: Arcs and Closed Curve - Analytic Functions in Regions - Conformal Mapping - Length and Area. Linear Transformations: The Linear Group - The Cross Ratio - Symmetry.

Fundamental Theorems in complex Integration: Line Integrals - Rectifiable Arcs - Line Integrals as Functions of Arcs - Cauchy's Theorem for a Rectangle - Cauchy's Theorem in a Disk. Cauchy's Integral Formula: The Index of a point with respect to a closed curve - The Integral Formula - Higher Derivatives.

Local Properties of Analytic Functions: Removable singularities - Taylor's Theorem - Zeros and poles The Local mapping - The maximum principle

UNIT IV :

The General Form of Cauchy's Theorem : Chains and Cycles - Simple connectivity - Multiply Connected Regions. The Calculus of Residues: The Residue Theorem - The Argument Principle - Evaluation of Definite Integrals.

UNIT V :

Harmonic Functions: Definition and Basic Properties - The mean value Property - Poisson's Formula Schwarz's Theorem - Power Series Expansions: Weierstrass's Theorem - The Taylor Series - The Laurent Series.

TEXT BOOK:

[1] Lars.V.Ahl

GOVERNMENT COLLEGE FOR WOMEN (AUTONOMOUS)

KUMBAKONAM - 612001

Affiliated to Bharathidasan University

DST - CURIE Sponsored Institution IV Cycle of Accreditation

UNIT I : Chapter 3 (sections 2.1 to $2.4,3.1$ to 3.3)
UNIT II : Chapter 4 (sections 1.1 to $1.5,2.1$ to 2.3)
UNIT III : Chapter 4 (sections 3.1 to 3.4)
UNIT IV : Chapter 4 (sections 4.1, 4.2, 4.7, 5.1 to 5.3)
UNIT V : Chapter 4 (sections 6.1 to 6.4) Chapter 5: (sections 1.1 to 1.3)

REFERENCES :

[1] S Ponnusamy, Foundation of complex Analysis, Narosa Publishing House . 1995
[2] V Karunakaran, complex analysis, Narosa publishing House, 2005.
[3] J.B. Conway, Functions of one Complex Variable, Narosa, 2nd edition, 1991.

Question Paper Pattern

SECTION A $10 \times 2=20$ (Each Unit Carries Two Questions)
SECTION B $5 \times 5=25$ (Each Unit Carries Two Questions (Either or Type))
SECTION C $3 \times 5=30$ (Each Unit Carries One Questions)

Total $=75$

CC - VIII THEORY OF NUMBERS

Theory Hours : 5 Course Code : P21MC208 Exam Hours : $\mathbf{3}$ Credits : 4 Internal : 25 External: 75

UNIT I:

Fundamentals of Congruence's: Basic properties of Congruence's - Residue Systems - Solving Congruence's: Linear Congruence's - The Theorems of Fermat and Wilson Revisited

UNIT II :

The Chinese Remainder Theorem - Polynomial Congruence's. Arithmetic functions: Combinatorial study
of $\Phi(\mathrm{n})$ - Formulae for $\mathrm{d}(\mathrm{n})$ and $\sigma(\mathrm{n})$ - Multiplicative Arithmetic functions - The mobius Inversion formula

UNIT III :

Quadras mond

GOVERNMENT COLLEGE FOR WOMEN (AUTONOMOUS)

KUMBAKONAM - 612001 Affiliated to Bharathidasan University

DST - CURIE Sponsored Institution IV Cycle of Accreditation

Applications of the Quadratic reciprocity law

UNIT IV :

Sums of Squares: sums of two squares - Sums of Four Squares - Elementary Partition theory: Graphical representation - Euler's partition theorem - Searching for partition identities .

Partition Generating Function: Infinite products as Generating functions -Identities between infinite series
and Products . Partitions Identities : History and Introduction - Euler's Pentagonal number theorem.

TEXT BOOK :

[1] George E. Andrews, Number theory, Dover Publication, INC, New York, Reprint 2013.
UNIT I : Chapter 4 (sections 4.1, 4.2) and Chapte5 (sections 5.1, 5.2)
UNIT II : Chapter 5 (sections 5.3,5.4) and Chapter 6(sections 6.1 to 6.4)
UNIT III : Chapter 9 (sections 9.1 to 9.4)
UNIT IV: Chapters 11 and 12
UNIT V : Chapter 13 and Chapter 14 (sections14.1, 14.2)

REFERENCES:

[1] Dr. Sudhir Pundir and Dr. Rimple Pundir, Theory of Numbers, First Edition, Pragasiprakashan Publications, 2006.
[2] Gareth A. Jones and J. Mary Jones, Elementary Number Theory, Springer Verlag, Indian Reprint, 2005.
[3] David M. Burton, Elementary Number theory, $6^{\text {th }}$ edition, McGraw Hill, 2007.
[4] J. William, Fundamentals of Number Theory, Leveque, Addison-Wesley
Publishing Company, Phillipines, 1977.

Question Paper Pattern
SECTION A $10 \times 2=20$ (Each Unit Carries Two Questions)
SECTION B $5 \times 5=25$ (Each Unit Carries Two Questions (Either or Type))
SECTION C $3 \times 5=30$ (Each Unit Carries One Questions)

Total $=75$

MBEC - II STOCHASTIC PROCESSES
Theory Hours : 5 Course Code : P21M2MBE2:1 Exam Hours : 3 Credits : 3 Internal : 25 External : 75

GOVERNMENT COLLEGE FOR WOMEN (AUTONOMOUS)
KUMBAKONAM - 612001 Affiliated to Bharathidasan University

DST - CURIE Sponsored Institution IV Cycle of Accreditation
C 0435-2401391
principal@gcwk.ac.in

Stochastic Processes: Some Notions - Specification of Stochastic Processes - Stationary Processes Markov Chains : Definitions and Examples - Higher Transition Probabilities.

UNIT II :

Generalization of Independent Bernoulli Trails - Sequence of Chains - Dependent Trials. Markov Chains: Classification of states and chains - Determination of Higher Transition probabilities - Stability of a Markov system.

UNIT III:

Markov processes with Discrete state space: Poisson processes and its Extensions - Poisson processes and related distributions - Birth and Death process .

Renewal Processes and Theory: Renewal Process - Renewal Processes in continuous time - Renewal equations - Stopping time - Wald's equation.

Stationary Processes and Time Series: Models of Time Series - Time and Frequency domain: Power
Spectrum - Statistical Analysis of Time Series.

TEXT BOOK:

[1] J.Medhi, Stochastic Processes, Second Edition, New Age International Private
Limited, New Delhi, 1994.
UNIT I : Chapter 2 (Sections 2.1to2.3,) and Chapter 3 (Sections 3.1, 3.2)
UNIT II : Chapter 3 (Sections 3.3 to 3.6)
UNIT III : Chapter 4 (Sections 4.1, 4.2, 4.4)
UNIT IV : Chapter 6 (Sections 6.1 to 6.4)
UNIT V : Chapter 8 (Sections 8.2 to 8.4)

REFERENCES :

[1] Samuel Korlin, Howard M.Taylor,A First course in Stochastic Processes,Second Edition.
[2] Narayan Bhat, Elements of Applied Stochastic Processes.
[3] S.K. Srinivasan and K. Mehata, Stochastic Processes, Tata McGrew Hill 1976.
[4] Oliver Knill, Probability Theory and Stochastic Process with Applications,
Overseas Press (India), Pvt. Ltd, Edition 2009.

Question Paper Pattern

GOVERNMENT COLLEGE FOR WOMEN (AUTONOMOUS)

KUMBAKONAM - 612001

SECTION A $10 \times 2=20$ (Each Unit Carries Two Questions)
SECTION B $5 \times 5=25$ (Each Unit Carries Two Questions (Either or Type))
SECTION C $3 \times 5=30$ (Each Unit Carries One Questions)

Total $=75$

HOD SIGNATURE IQAC COORDINATOR PRINCIPAL CC - X MEASURE THEORY AND INTEGRATION

Theory Hours : 6 Course Code : P21MC310 Exam Hours : 3 Credits : 5 Internal :
25 External: 75

Measure on the Real Line: Lebesgue Outer Measure - Measurable Sets - Regularity - Measurable
Function - Borel and Lebesgue Measurability.
Integration of Functions of a Real Variable: Integration of Non-negative Functions - The General
Integral - Integration of Series - Riemann and Lebesgue Integrals.

UNIT III :

Inequalities and the $\mathbf{L}^{\mathbf{p}}$ Spaces: The L^{p} spaces - Convex functions - Jensen's Inequalities - The Inequalities of Holders and Minkowski.

UNIT IV :

Convergence in Measure - Almost Uniform Convergence - Singed Measures and Hahn Decomposition The Jordan Decomposition.

UNIT V :

Measurability in a Product Space - The Product Measure and Fubini's Theorem. The Radon - Nikodym Theorem.

TEXT BOOK:

[1] G.de. Barra,

International Private Limited, Reprint 2003.
UNIT I : Chapter 2 (sections 2.1 to 2.5)
UNIT II : Chapter 3 (sections 3.1 to 3.4)
UNIT III : Chapter 6 (sections 6.1 to 6.4)
UNIT IV : Chapter 7 (sections 7.1, 7.2) and Chapter 8 (sections 8.1, 8.2)
UNIT V : Chapter 10 (sections 10.1, 10.2) and Chapter 8(section 8.3)

REFERENCES :

[1] Inder K. Rana, An Introduction to Measure and Integration, Narosa Publishing House, New Delhi, 1997.
[2] M.E. Munroe, Measure and Integration, Second Edition, Addition - Wesley
Publishing Company, 1971.
[3] P.K. Jain, V.P Gupta, Lebesgue Measure and Integration, New Age International Pvt. Ltd. Publishers, New Delhi, 1986 (Reprint 2000)
[4] Richard L. Wheeden and Andoni Zygmund, Measure and Integral: An Introduction to Real Analysis, Marcel Dekker Inc 1977.

Question Paper Pattern

SECTION A $10 \times 2=20$ (Each Unit Carries Two Questions)
SECTION B $5 \times 5=25$ (Each Unit Carries Two Questions (Either or Type))
SECTION C $3 \times 5=30$ (Each Unit Carries One Questions)

Total $=75$

CC - XI TOPOLOGY

Theory Hours : 6 Course Code : P21MC311 Exam Hours : 3 Credits : 5 Internal : 25 External: 75

UNIT I :

Topological Spaces: Topological Spaces - Basis for a Topology - The order Topology. The Product Topology on X x Y - The Subspace Topology.

UNIT II :

Closed Sets and Limit points - Continuous Functions: Continuous Functions - The Product Topology.

GOVERNMENT COLLEGE FOR WOMEN (AUTONOMOUS)

KUMBAKONAM - 612001

UNIT III :

Connectedness: Connected Spaces - Connected Subspaces of the Real Line -Components and local Connectedness

UNIT IV :

Compactness: Compact Spaces - Compact Subspaces of the Real Line - Limit point Compactness - local

UNIT V :

Countability and Separation Axioms: The Countability Axioms - The Separation Axioms - Normal
Spaces - The Urysohn Lemma - The Urysohn Metrization Theorem - The Tietz Extension Theorem.

TEXT BOOK :

[1] James R. Munkres, Topology, Second Edition, Prentice - Hall of India private Limited, New Delhi, 2013.
UNIT I : Chapter 2 (Sections 12 to 16)
UNIT II : Chapter 2 (Sections 17 to 19)
UNIT III : Chapter 3 (Sections 23 to 25)
UNIT IV : Chapter 3 (Sections 26 to 29)
UNIT V : Chapter 4 (Sections 30 to 35)

REFERENCES :

[1] J. Dugundji, Topology, Prentice Hall of India, New Delhi, 1976.
[2] Sheldon W. Davis, Topology, UBS Publishers Distributors Private Limited, New Delhi, 1989.
[3] G. F. Simmons, Introduction to Topology and Modern Analysis, McGraw Hill, 1963.
[4] S. Willard, General Topology, Addison-Wesley, 1970.

Question Paper Pattern

SECTION A $10 \times 2=20$ (Each Unit Carries Two Questions)
SECTION B $5 \times 5=25$ (Each Unit Carries Two Questions (Either or Type))
SECTION C $3 \times 5=30$ (Each Unit Carries One Questions)

```
Total=75
```


CC - XIII FUNCTIONAL ANALYSIS

GOVERNMENT COLLEGE FOR WOMEN (AUTONOMOUS)
KUMBAKONAM - 612001

Theory Hours : 6 Course Code : P20MC413 Exam Hours : $\mathbf{3}$ Credits : 4 Internal :
 25 External: 75

UNIT I :
 Banach Spaces: The definition and some examples - Continuous Linear Transformations - The Hahn Banach Theorem.

The Natural Imbedding of N in $\mathrm{N}^{* *}$ - The open Mapping Theorem - The conjugate of an operator. UNIT
III :
Hilbert Spaces: The definition and some simple properties - Orthogonal Complements - Orthonormal sets - The Conjugate space H^{*} - The adjoint of an operator - Self - adjoint operators - Normal and Unitary operators Projections.

UNIT IV :

Finite - Dimensional Spectral Theory: Matrices - Determinants and the spectrum of an operator - The Spectral Theorem - A survey of the situation.

General Preliminaries on Banach Algebras: The definition and some examples - Regular and singular elements - Topological divisors of zero - The spectrum - The formula for the Spectrul radius - The radical and semi Simplicity. The structure of Commutative Banach Algebras: The Gelfand Mapping - Applications of the formula $\mathrm{r}(\mathrm{x})=\lim \|\mathrm{x}\|$.

TEXT BOOK:

[1] G.F. Simmons, Introduction to Topology and Modern Analysis, Tata McGraw
Hill International Edition, 2005.
UNIT I : Chapter 9 (sections 46 to 48)
UNIT II : Chapter 9 (sections 49 to 51)
UNIT III : Chapter 10
UNIT IV : Chapter 11
UNIT V : Chapter 12 and chapter 13 (sections 70, 71)

REFERENCE(S):

[1] B.V Limaye, Functional Analysis, New Age International Private Limited, 1996.
[2] Walter Rudin, Functional Analysis, TMH Edition, 1974.
[3] K. Yosida, Functional Analysis, Springer - Verlag, 1974.
[4] Laurent Schwarz, Functional Analysis, Courant Institute of Mathematical
Sciences, New York University, 1964.

Question Paper Pattern
SECTION A $10 \times 2=20$ (Each Unit Carries Two Questions)
SECTION B $5 \times 5=25$ (Each Unit Carries Two Questions (Either or Type))
SECTION C $3 \times 5=30$ (Each Unit Carries One Questions)

Total $=75$

CC - XII - INTEGRAL EQUATIONS, CALCULUS OF VARIATIONS AND FOURIER TRANSFORMS
Theory Hours : 6 Course Code : P21MC312 Exam Hours : 3 Credits : 5 Internal :
25 External : 75

UNIT I :

Calculus of variations - Maxima and Minima - The simplest Case - Natural Boundary and Transition conditions - Variational notation - More general case - Constraints and Lagrange's Multipliers - Variable end points - Strum Liouville problems.

UNIT II :

Fourier Transforms - Fourier Sine and Cosine transforms - properties - Convolution - solving Integral equations - Finite Fourier Transforms - Finite Fourier Sine and Cosine transforms - Fourier Integral Theorem Parseval's identity.

UNIT III :

Hankel Transforms: Definition - Inverse formula - Some important results for Bessel functions Linearity Property - Hankel Transform of the derivatives of the function - Hankel Transform of differentialoperators - Parsaval's Theorem.

UNIT IV :

Linear Integral Equations: Definition, Regularity Conditions - Special kind of kernels - Eigen values and Eigen functions - Convolution Integral - The inner or scalar product of two functions - Notation - Reduction to a system of Algebraic equations - Examples - Fredholm alternative - Examples - An approximate method.

UNIT V :

Method of successive Approximations: Iterative scheme - Examples - Volterra Integral Equation Examples - Some results about the Resolvent Kernel. Classical Fredholm Theory: The method of solution of Fredholm - Fredholm's First Theorem -Second Theorem - Third Theorem.

TEXT BOOKS:

[1] Ram. P. Kanwal, Linear Integral Equations Theory and Technique, Academic Press 1971.
[2] F.B. Hildebrand, Methods of Applied Mathematics, second Edition, PHI, New Delhi, 1972.

GOVERNMENT COLLEGE FOR WOMEN (AUTONOMOUS)

KUMBAKONAM - 612001

[3] A.R. Vasishtha and R.K. Gupta, Integral Transforms, second Revised Edition Krishna Prakashan Media, Private Limited, India. 1975.

UNIT I : Chapter 2 (sections 2.1 to 2.9) of (2)
UNIT II : Chapter 6 and Chapter 7 (sections 7.1 to 7.4) of [3]
UNIT III : Chapter 9 of [3]
UNIT IV: Chapters 1 and 2 of [1]
UNIT V : Chapters 3 and 4 of [1]

REFERENCE:

[1] I.N. Shedden, Mixed Boundary value problems in practical Theory, North Holland, 1966.
[2] S.J. Mikhlin, Linear integral equations (translated from Russian), Hindustan Book Agency, 1960.
[3] I.N. Snedden, Mixed Boundary value problems in potential theory, North Holland, 1966.
[4] R.T. Rockafellar and R.J.B. Wets, Variational Analysis, springer, Grundlehren 317 (1998).

Question Paper Pattern

SECTION A $10 \times 2=20$ (Each Unit Carries Two Questions)
SECTION B $5 \times 5=25$ (Each Unit Carries Two Questions (Either or Type))
SECTION C $3 \times 5=30$ (Each Unit Carries One Questions)

Total $=75$
Total 75

